
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: WoW Max
Date: 29 Aug, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for WoW Max

Approved By Oleksii Zaiats | SC Audits Head at Hacken OÜ

Tags DEX

Platform EVM

Language Solidity

Methodology Link

Website https://wowmax.exchange/

Changelog 07.08.2023 – Initial Review
29.08.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://wowmax.exchange/


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
C01. Access Control Violation 10
C02. Balance Manipulation 11
C03. Missing Validation 11

High 12
H01. Sandwich Attack 12
H02. Possible Funds Loss 12

Medium 13
M01. Usage Of Built-in Transfer 13
M02. Missing Validation 13
M03. Unsafe Usage of Third Party Protocol 14

Low 14
L01. Out-Of-Bounds Array Access 14
L02. Redundant Import 15

Informational 15
I01. Floating Pragma 15
I02. Solidity Style Guides Violation 16

Disclaimers 17
Appendix 1. Severity Definitions 18

Risk Levels 18
Impact Levels 19
Likelihood Levels 19
Informational 19

Appendix 2. Scope 20

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by WoW Max(Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

The project "WoW Max" is a decentralized exchange (DEX) aggregator designed
with the objective of optimizing exchange amounts. Its primary function
involves analyzing token prices across multiple DEX platforms and
identifying the most efficient exchange path among various exchange
protocols.
By doing so, WOWMAX aims to provide users with the best possible returns on
their token exchanges, maximizing their gains while reducing potential
losses.
The files in the scope:

● WowmaxRouter.sol - The contract that the users interact with.
Responsible for the swapping logic of WoW Max which interacts with
several verified DEXes.

● WowmaxSwapReentrancyGuard.sol - The reentrancy guard implementation
for the WowmaxRouter.sol which does not allow for reentry during any
swapping operations.

● IWETH.sol - Interface for the native token wrapper.
● IWowmaxRouter.sol - Interface for WowmaxRouter.sol
● Curve.sol - Swapping library for Curve like swapping protocols.
● DODOV1.sol - Swapping library for DODOV1 swapping protocol.
● DODOV2.sol - Swapping library for DODOV2 swapping protocol.
● Fulcrom.sol - Swapping library for Fulcron swapping protocol.
● Hashflow.sol - Swapping library for Hashflow swapping protocol.
● Level.sol - Swapping library for Level swapping protocol.
● PancakeSwapStable.sol - Swapping library for PancakeSwap like

protocols.
● Saddle.sol - Swapping library for Saddle swapping protocol.
● UniswapV2.sol - Swapping library for UniswapV2 swapping protocol.
● UniswapV3.sol - Swapping library for UniswapV3 swapping protocol.
● Wombat.sol - Swapping library for Wombat swapping protocol.
● WooFi.sol - Swapping library for WooFi swapping protocol.

Privileged roles
● Owner: Can withdraw excess funds from the contract, in case of

leftovers after a swap, or invalid swap requests.
● User: Can interact with the WowmaxRouter.swap to swap tokens.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.
● Description of the development environment is present.

Code quality
The total Code Quality score is 10 out of 10.

● The code follows the Solidity style guides.
● The development environment is configured.

Test coverage
Code coverage of the project is 100% (branch coverage)

● Deployment and user interactions are covered with tests.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

7 August 2023 2 3 2 3

29 August 2023 0 0 0 0

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

● The implementations of the swapping logic used in the system are out
of scope of this contract, and therefore their safety cannot be
verified.

● The amountOutExpected parameter during swaps is user-provided. A
check for it to be non-zero is implemented; however, the value cannot
be fully monitored and the risk for it to be invalid is present.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Passed

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Passed

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

C01. Access Control Violation

Impact High

Likelihood High

In the contract, any user can call functions and grant approval to
any specified address without any validation. An attacker could
create a malicious pool contract, obtain approvals for their
contract, and if there are any funds in the WowmaxRouter contract,
transfer those tokens to their own wallet. Inside the swap()
functions. A malicious attacker can deploy a malicious contract and
pass it as swapData.add parameter to these functions. In this
scenario, the WowmaxRouter contract will grant token approval to the
given contract address. Later, malicious user can withdraw ERC20
tokens using the transferFrom() function. Since they already obtained
the approval, he can successfully execute the transferFrom() from
WowmaxRouter to a malicious contract.

Paths: ./contracts/WowmaxRouter.sol,

./contracts/WowmaxSwapReentrancyGuard.sol,

./contracts/libraries/Curve.sol,

./contracts/libraries/DODOV1.sol,

./contracts/libraries/Hashflow.sol,

./contracts/libraries/PancakeSwapStable.sol,

./contracts/libraries/Saddle.sol,

./contracts/libraries/UniswapV2.sol,

./contracts/libraries/Wombat.sol,

Recommendation: Implement validation for the swapData.addr for each
contract, such as a whitelist. The contract should be designed to
only accept addresses that are approved by the system. If the address
is not recognized, the contract should revert the transaction.

Found in: 7c053df

Status: Mitigated (The edge case of this exploit is if a user sends
accidental funds to the contract, or there are dust values left in
the contract. Since there should not be funds for an attacker in the
contract and even if there are funds, the exploit only affects the
individual user in fault and not the system itself. The issue is
reported as a risk.)

www.hacken.io
10



C02. Balance Manipulation

Impact High

Likelihood High

Within the swap() function, if request.amountIn is set to zero during
a swap operation, the contract fails to execute the swap, instead
transferring the contract's current balance to the function's
executor.

Within the swap() function, if the contract already has a non-zero
token balance during a swap operation, it will send the excess amount
of tokens to the executor of the function, due to balanceOf() usage
and user-given amountsOutExpected parameter. This could enable users
to illicitly extract tokens from the contract's balance.

Also, exchangeRoutes could be set as empty list, which results in
skipping exchange function calls.

Path: ./contracts/WowmaxRouter.sol : swap()

Recommendation: Introduce beforeBalance and afterBalance checks
before and after the exchange() function, respectively. Initially,
capture the contract's balance using balanceOf() and, once all
operations are complete, call balanceOf() again. Subtracting these
values (balanceAfter - balanceBefore) will yield the accurate amount
of tokens exchanged during the operation. Use this amount on transfer
instead of using the balanceOf() amount directly. Introduce
validation of input parameters to revert transaction with incorrect
input data.

Found in: 7c053df

Status: Mitigated (The edge case of this exploit is if a user sends
accidental funds to the contract, or there are dust values left in
the contract. Since there should not be funds for an attacker in the
contract and even if there are funds, the exploit only affects the
individual user in fault and not the system itself. The issue is
reported as a risk.)

C03. Missing Validation

Impact High

Likelihood High

The uniswapV3SwapCallback() function is intended for use only during
an active swap. But when handling native token transfers, if a
contract is deployed to accept these swapped tokens, its receive()
function gets triggered. This allows a malicious actor to potentially
exploit the process by invoking the uniswapV3SwapCallback() within
the receive() function, redirecting tokens to an unauthorized
contract.

www.hacken.io
11



Also, the same scenario is possible by deploying and passing
malicious contracts to the swap function.

Path: ./contracts/WowmaxRouter.sol : swap()

Recommendation: Ensure that the msg.sender is associated with the
uniswapV3 pool Factory. Incorporate an address computation function
that accepts the swapped token addresses (token0 and token1) and the
init code hash, subsequently computing the pool address. At the onset
of the function, validate that msg.sender equals the computed
address.

Found in: 7c053df

Status: Mitigated (The edge case of this exploit is if a user sends
accidental funds to the contract, or there are dust values left in
the contract. Since there should not be funds for an attacker in the
contract and even if there are funds, the exploit only affects the
individual user in fault and not the system itself. The issue is
reported as a risk.)

High

H01. Sandwich Attack

Impact High

Likelihood Medium

The contract performs swaps based on user-provided slippage values,
but it lacks a proper mechanism for slippage calculation. The absence
of a proper mechanism for slippage calculation can make the system
vulnerable to sandwich attacks initiated by a malicious actor.

Path: ./contracts/WowmaxRouter.sol : swap(), sendTokens()

Recommendation: Implement proper minimum slippage calculation and
validate the given input.

Found in: 7c053df

Status: Fixed (Revised commit: e34a1be)

H02. Possible Funds Loss

Impact High

Likelihood Medium

Inside the swap() function, during an ETH to Token swap operation, if
a user sends an empty request.exchangeRoutes and specifies zero for
amountOutExpected, the router contract still retains the user's Ether
even though the swap is not complete due to the absence of
request.exchangeRoutes.

www.hacken.io
12



In the swap() function, during a Token to Token swap operation, if
the amountOutExpected is set too low (e.g., 1 or 2), the majority of
the swapped tokens will be transferred to the treasury. Users will
receive an extremely small amount of tokens due to the logic inside
the sendTokens if-statement:

amountExtra = amountOut - request.amountOutExpected[i];

amountsOut[i] = request.amountOutExpected[i];

This can result in a loss of funds for the user.

Path: ./contracts/WowmaxRouter.sol : swap(), receiveTokens(),
sendTokens()

Recommendation: Implement a proper validation for
request.amountOutExpected[i]

Found in: 7c053df

Status: Fixed (Revised commit: e34a1be)

Medium

M01. Usage Of Built-in Transfer

Impact Medium

Likelihood Medium

The built-in transfer and send functions process hard-coded amount of
Gas. In case of receiver is a contract with receive or fallback
function, the transfer may fail due to the “out of Gas” exception.

Path: ./contracts/WowmaxRouter.sol : transfer(), withdrawETH()

Recommendation: Replace transfer and send functions with call or
provide special mechanism for interacting with a smart contract.

Found in: 7c053df

Status: Fixed (Revised commit: e34a1be)

M02. Missing Validation

Impact Medium

Likelihood Medium

The fee variable in the swapData function is sent as an input to the
contract without any validation checks. Notably, while UniswapV2's
fee is hardcoded at %0.3, the fee input parameter can be specified to
be greater than this value. This discrepancy could lead to
inconsistencies in the contract's operation.

Path: ./contracts/libraries/UniswapV2.sol: swap()

www.hacken.io
13



Recommendation: Either explain clearly in the public documentation if
the system takes additional fee or define fee as a constant variable.

Found in: 7c053df

Status: Fixed (Revised commit: e34a1be)

M03. Unsafe Usage of Third Party Protocol

Impact Medium

Likelihood Medium

The contract uses third party protocols in its swapping logic;
however, there is no proper way to disconnect these protocols from
the system in case they get corrupted.

This may result in unexpected behavior and fund losses if the used
swapping protocols get hacked.

Paths:

./contracts/libraries/Curve.sol

./contracts/libraries/DODOV1.sol

./contracts/libraries/DODOV2.sol

./contracts/libraries/Fulcrom.sol

./contracts/libraries/Hashflow.sol

./contracts/libraries/Level.sol

./contracts/libraries/PancakeSwapStable.sol

./contracts/libraries/Saddle.sol

./contracts/libraries/UniswapV2.sol

./contracts/libraries/UniswapV3.sol

./contracts/libraries/Wombat.sol

./contracts/libraries/WooFi.sol

Recommendation: Implement a pausing mechanism for every third party
swapping protocol that is used in the system so that proper actions
can be taken in case of a hack in the corresponding third party
protocol.

Found in: 7c053df

Status: Mitigated (The slippage protection implemented is enough to
ensure safety of swaps.)

Low

L01. Out-Of-Bounds Array Access

Impact Low

Likelihood Medium

Out-of-bounds array access issues in Solidity arise when reading from
or writing to an array position that exceeds the current array
length. This leads to unexpected outcomes, such as default value
returns for read operations or exceptions for write operations.

www.hacken.io
14



Improper handling of these cases can potentially expose the contract
to unexpected behavior.

Path: ./contracts/WowmaxRouter.sol : sendTokens()

Recommendation: All array accesses should be within bounds.
Enforcement of array bounds can be ensured by implementing 'require'
statements. Implement Check (request.to.length ==
request.amountOutExpected.length)

Found in: 7c053df

Status: Fixed (Revised commit: e34a1be)

L02. Redundant Import

Impact Low

Likelihood Medium

The contract inherits OpenZeppelin’s ReentrancyGuard, but it does not
use its functionality.

The redundancy in inheritance and import can lead to unnecessary Gas
consumption during deployment and potentially impact code quality.

Path: ./contracts/WowmaxRouter.sol : ReentrancyGuard

Recommendation: Remove redundant import and inheritance to save Gas
on deployment and increase the code quality.

Found in: 7c053df

Status: Fixed (Revised commit: e34a1be)

Informational

I01. Floating Pragma

The project uses floating pragmas ^0.8.7.

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version, which may include bugs that affect the system negatively.

Path: ./contracts/*.sol

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment. Consider
known bugs (https://github.com/ethereum/solidity/releases) for the
compiler version that is chosen.

Found in: 7c053df

Status: Fixed (Revised commit: e34a1be)

www.hacken.io
15

https://github.com/ethereum/solidity/releases


I02. Solidity Style Guides Violation

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

The suggested order of elements within each contract, library, or
interface is as follows:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

Functions should be ordered and grouped by their visibility as
follows:

● Constructor
● Receive function (if exists)
● Fallback function (if exists)
● External functions
● Public functions
● Internal functions
● Private functions

Within each grouping, view and pure functions should be placed at the
end.

Furthermore, following the Solidity naming convention and adding
NatSpec annotations for all functions are strongly recommended. These
measures aid in the comprehension of code and enhance overall code
quality.

Path: ./contracts/WowmaxRouter.sol

Recommendation: Consistent adherence to the official Solidity style
guide is recommended. This enhances readability and maintainability
of the code, facilitating seamless interaction with the contracts.
Providing comprehensive NatSpec annotations for functions and
following Solidity's naming conventions further enrich the quality of
the code.

Found in: 7c053df

Status: Fixed (Revised commit: e34a1be)

www.hacken.io
16



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
17



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
18



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
19



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/wowswap-io/wowmax-contracts

Commit 7c053dfd12460e6dd9c351ba9f1bc6e28a80e103

Whitepaper Link

Requirements Link

Technical
Requirements Link

Contracts File: contracts/WowmaxRouter.sol
SHA3: aae55d441e19246e05007ed73b6a52f444c8bac33f83b64e5cf67d10ccbddfb4

File: contracts/WowmaxSwapReentrancyGuard.sol
SHA3: 72f4fc233037fb4ae6c3c8bbb59638e00329066e820ca3b6923628b27a6a58a9

File: contracts/interfaces/IWETH.sol
SHA3: 90ab897ec8f6b350bed91d01d3b980ce196eb315aaa7b775394d6c5f58c2c5b5

File: contracts/interfaces/IWowmaxRouter.sol
SHA3: 584500427482c53bb1b240c3d06dd6a95b85a9986a5bce56b129cffe2860ed42

File: contracts/libraries/Curve.sol
SHA3: feb0b9b91f6c546ddea09d224362c5f66ec03f2028f1d87a1157477400f0d066

File: contracts/libraries/DODOV1.sol
SHA3: 18c9a2b6c64ab08198e5299b848cd7ab4d22cc9dd9d6461179dbac84a476cdbf

File: contracts/libraries/DODOV2.sol
SHA3: 14b6ff7ac7f64d317f718203323fa4a44e89887a7591f738469037bcbe19b6e5

File: contracts/libraries/Fulcrom.sol
SHA3: 75f2f4de7cac4f6e1b101cbd440af724d8cb466bfceda7baa55fd67153507c0f

File: contracts/libraries/Hashflow.sol
SHA3: 307a326fedef3017f293baa4087d5690e2e8f823bee12a6868bf8f8bb69c87f5

File: contracts/libraries/Level.sol
SHA3: 5946a80d0c66be0f83c3eaf6c0d4f84b70b7638f0346a614e87edfcace9a20a3

File: contracts/libraries/PancakeSwapStable.sol
SHA3: 3667bc3a47d75d31a9280c12a6e1e34581b9d88effe7b9498fa0abd95056c619

File: contracts/libraries/Saddle.sol
SHA3: a0bdd201fe01810ebaeaaad563831a61bd3bfefe6d5a7f04a300dd7ca2ac2b12

File: contracts/libraries/UniswapV2.sol
SHA3: 2d4aecfbf5f0594b69181346c6f72528575c9d0c93cf02233dd93281d3c41367

File: contracts/libraries/UniswapV3.sol
SHA3: 77f133dbe17355c295f0991ecf92b84896d570525a4b5e6d236264651a6a5e8c

www.hacken.io
20

https://github.com/wowswap-io/wowmax-contracts
https://drive.google.com/file/d/1PzmRGSbawzZS8TTxlJtvVpBL4CbyTCWv/view
https://docs.wowswap.io/
https://docs.wowswap.io/


File: contracts/libraries/Wombat.sol
SHA3: 61bd2fa4168f5d96a97f1b36a1e01f0253f71dd4fd7792b4ce244087a5816bdc

File: contracts/libraries/WooFi.sol
SHA3: e8516905ab709f989fe348e19b6f6666041bed566fdb91002d221f8cfbab5f78

Second review scope

Repository https://github.com/wowswap-io/wowmax-contracts

Commit e34a1be3c45996ba52861a1fa4ec843071a20b37

Whitepaper Link

Requirements Link

Technical
Requirements Link

Contracts File: contracts/WowmaxRouter.sol
SHA3: 3a2369275bbd5689ff13b2edff3ddeaaa60bc16a00cf18942e7a73433c3ff766

File: contracts/WowmaxSwapReentrancyGuard.sol
SHA3: 33746522269301071b49b107f3967b950d3a688fc6faf34d28a9cdd6609af0b9

File: contracts/interfaces/IWETH.sol
SHA3: cbbf604794519641fde2247a0263def580d225dfd8ef3acef5f0e9dd9576ed77

File: contracts/interfaces/IWowmaxRouter.sol
SHA3: 45b47da1fb93c9e3393805c87fde2037be003ab5b2d15a923073eb0441198b97

File: contracts/libraries/Curve.sol
SHA3: 7183a160685b927e598a5dd08e7d4e8a5a31a18c0eb7735aee2dc13d088f9c14

File: contracts/libraries/DODOV1.sol
SHA3: ace71a581d8cc833286344a6efc66404f5865fad60bbffc5b08cc0a6d02f3c76

File: contracts/libraries/DODOV2.sol
SHA3: 5d386f137ec37fa5a271e27a848a42a4dff489bbd5b1b33c8079428c608bf3bd

File: contracts/libraries/Fulcrom.sol
SHA3: 89c37345ff0f265c538e30eb5567379869ee274d4936ed1f7b5ecdc59c0b21b0

File: contracts/libraries/Hashflow.sol
SHA3: bb561ec996c807a59a74a92e63364778b39b8cb65f44fb9a5984bec4f4a831cc

File: contracts/libraries/Level.sol
SHA3: 41042c4dd7ff21c13145792e2ecea7cc4a4d35759cedded3469732c89196eb49

File: contracts/libraries/PancakeSwapStable.sol
SHA3: c850463a378f8c8cf61752b08b37e179bd87f6f56182a557756657efe50605dd

File: contracts/libraries/Saddle.sol
SHA3: d8865ff72d1af012497ccf849375d640eae896276254a50e4cc2305e2342eb33

File: contracts/libraries/UniswapV2.sol
SHA3: 024f067cd50dd6f71cd44c9747c17f289b7840af3517548e53ea5dad04b19893

File: contracts/libraries/UniswapV3.sol

www.hacken.io
21

https://github.com/wowswap-io/wowmax-contracts
https://drive.google.com/file/d/1PzmRGSbawzZS8TTxlJtvVpBL4CbyTCWv/view
https://docs.wowswap.io/
https://docs.wowswap.io/


SHA3: fb4e25430a774906434a84f97bb0e761b8211e75ba79618675cfbedd45bd7261

File: contracts/libraries/Wombat.sol
SHA3: 9a50f2651560ae1fb53fa78bfebaf915eaa0126e043133e042a7237562d430c0

File: contracts/libraries/WooFi.sol
SHA3: ec579cfeb5f69c46a49e8389d48c4aea49ee710f8d0b2aadfdff9b83ebff318e

www.hacken.io
22


